C-STEM Day
Saturday, May 31, 2014
UC Irvine ~ Orange County

RoboPlay Challenge Competition

UC Davis Center for Integrated Computing and STEM Education
http://c-stem.ucdavis.edu

Middle School
The UC Davis C-STEM Center aims to close the achievement gap by broadening participation of students traditionally underrepresented in computing and STEM fields and to develop students’ computer-aided problem-solving skills through engagement in real-world STEM problems. Through cutting edge research with funding from the National Science Foundation, the C-STEM Center, in collaboration with our industry partners, has developed innovative educational computing and robotics technologies for K-14 hands-on learning. These technologies are implemented in classrooms and afterschool programs around the state, culminating in the annual C-STEM Day, which includes the curriculum-based RoboPlay Competition and Math Programming Competition.

C-STEM Day is an opportunity to further engage students in project based team activities and to showcase their accomplishments and creativity in not only STEM topics, but also in writing, art, music, and film productions.

The RoboPlay Competition brings together student teams to participate in a series of challenges that require the integration of creativity, programming, robotics knowledge, collaboration and critical thinking.

The Math Programming Competition provides students in secondary schools an opportunity to demonstrate their understanding of mathematics through real world programming applications.

By continuing to successfully implement the C-STEM curriculum in classrooms and after school programs and by participating in the annual curriculum-base C-STEM Day competitions, we inspire students to pursue computing and STEM related careers and post-secondary study.

I would like to thank all of our participants for their hardwork, including the teachers and students. I would like to express my gratitude and deep appreciation to all of our volunteers for organizing this event, especially our two regional coordinators, Heidi Espindola at the UC Davis site, Merry Kim in Orange County, and also Rex Schrader and other HP engineers who have worked tirelessly creating the online scoring system and the challenge tasks for the RoboPlay Challenge Competition. Thank you also to all of our sponsors for making this C-STEM Day event possible.

Dr. Harry Cheng
C-STEM Center Director

NEW! C-STEM is now an option for new undergraduate applicants to select as a UC approved educational preparation program, commencing fall 2015 for all UC campuses. C-STEM student and team awards are now recognized in the UC admissions process as achievements that have explicitly prepared students for college and career.
C-STEM Day Schedule: May 31, 2014

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location*</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30am-8:30am</td>
<td>Registration and Setup for RoboPlay Challenge Competition</td>
<td>1st Floor</td>
</tr>
<tr>
<td>8:30am-8:40am</td>
<td>Welcome and Introduction</td>
<td>6011</td>
</tr>
<tr>
<td>8:40am-9:00am</td>
<td>RoboPlay Challenge Competition Introduction</td>
<td>6011</td>
</tr>
<tr>
<td>9:00am-12:00pm</td>
<td>RoboPlay Challenge Competition Problem Solving</td>
<td>As assigned</td>
</tr>
<tr>
<td>12:45pm-3:45pm</td>
<td>Lunch Break</td>
<td>6011</td>
</tr>
<tr>
<td>12:45pm-3:45pm</td>
<td>RoboPlay Challenge Competition</td>
<td>6011</td>
</tr>
<tr>
<td>3:45pm-4:00pm</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>4:00pm-5:00pm</td>
<td>Awards Ceremony:</td>
<td>6011</td>
</tr>
<tr>
<td></td>
<td>- C-STEM Awards of Achievement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- C-STEM Awards of Excellence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- C-STEM Scholarship</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- RoboPlay Video Competition Winners</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- RoboPlay Challenge Competition Winners</td>
<td></td>
</tr>
</tbody>
</table>

*All room locations are located in the UC Irvine Donald Bren School of Information & Computer Sciences.

Organizer: UC Davis C-STEM Center

Co-Organizer: Coastline ROP

C-STEM Program Manager; Regional Coord. UC Davis site: Heidi Espindola
Email: heespindola@ucdavis.edu
Phone: (530) 752-9082

C-STEM Center Director: Harry Cheng
Email: hhcheng@ucdavis.edu
Phone: (530) 752-5020

C-STEM Regional Coordinator, Orange County: Merry Kim
Email: mkim@coastlinerop.net
Phone: (714) 429-2242

C-STEM Program Manager, Regional Coord. UC Davis site: Heidi Espindola
Email: heespindola@ucdavis.edu
Phone: (530) 752-9082

C-STEM Regional Coordinator: Merry Kim
Email: mkim@coastlinerop.net
Phone: (714) 429-2242
Table of Contents

Competition Details
- Schedule of Events - Middle School ... 2
- Schedule of Events - High School ... 3
- Overview .. 4
- Challenge Materials .. 4
- Reminders for Students ... 4-5
- Definitions and Common Terms ... 5
- Diagrams ... 6-7

Challenges
1. Hit the Wall! (15 Points Possible) .. 8
2. Disco (30 Points Possible) .. 9
3. Chicken (30 Points Possible) ... 10
4. Bounce (40 Points Possible) ... 11
5. Speed Racer (60 Points Possible) 12
6. Racetrack (60 Points Possible) .. 13
7. High Five Low Five (60 Points Possible) 14
8. Steal the Gold (80 Points Possible) 15
9. The Grid (95 Points Possible) .. 16
10. Transport (115 Points Possible) .. 17

Maps
- Map of Event ... 18
- Participating Schools and Instructors 19
- Acknowledgements .. 20
Schedule for RoboPlay Challenge Competition

Middle Schools

<table>
<thead>
<tr>
<th>School</th>
<th>Teacher</th>
<th>Team #</th>
<th>Board</th>
<th>Practice Times</th>
<th>Competition Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corona Del Mar Middle School</td>
<td>Leedy</td>
<td>1</td>
<td>A</td>
<td>10:00 - 10:15 / 11:00 - 11:15</td>
<td>12:45 - 1:00 / 1:45 - 2:00 / 2:45 - 3:00</td>
</tr>
<tr>
<td>La Paz Intermediate School</td>
<td>Tellier</td>
<td>4</td>
<td>B</td>
<td>10:00 - 10:15 / 11:00 - 11:15</td>
<td>12:45 - 1:00 / 1:45 - 2:00 / 2:45 - 3:00</td>
</tr>
<tr>
<td>McPherson Magnet</td>
<td>Warren</td>
<td>7</td>
<td>C</td>
<td>10:00 - 10:15 / 11:00 - 11:15</td>
<td>12:45 - 1:00 / 1:45 - 2:00 / 2:45 - 3:00</td>
</tr>
<tr>
<td>TeWinkle Middle School</td>
<td>King</td>
<td>8</td>
<td>C</td>
<td>10:20 - 10:35 / 11:20 - 11:35</td>
<td>1:05 - 1:20 / 2:05 - 2:20 / 3:05 - 3:20</td>
</tr>
<tr>
<td>School</td>
<td>Teacher</td>
<td>Team #</td>
<td>Board</td>
<td>Practice Times</td>
<td>Competition Times</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Valley High School</td>
<td>Vu</td>
<td>10</td>
<td>D</td>
<td>10:00 - 10:15 / 11:00 - 11:15</td>
<td>12:45 - 1:00 / 1:45 - 2:00 / 2:45 - 3:00</td>
</tr>
<tr>
<td>University High School</td>
<td>Shulman</td>
<td>13</td>
<td>E</td>
<td>10:00 - 10:15 / 11:00 - 11:15</td>
<td>12:45 - 1:00 / 1:45 - 2:00 / 2:45 - 3:00</td>
</tr>
<tr>
<td>Northwood High School</td>
<td>Hermans</td>
<td>16</td>
<td>F</td>
<td>10:00 - 10:15 / 11:00 - 11:15</td>
<td>12:45 - 1:00 / 1:45 - 2:00 / 2:45 - 3:00</td>
</tr>
<tr>
<td>Santa Ana High School</td>
<td>Tappa</td>
<td>19</td>
<td>G</td>
<td>10:40 - 10:55 / 11:40 - 11:55</td>
<td>12:45 - 1:00 / 1:45 - 2:00 / 2:45 - 3:00</td>
</tr>
</tbody>
</table>
Overview

General Rules
1. You have 10 challenges to do in any order you like. Successful completion of each challenge earns your team points. The goal is to get as many points as possible.
2. The challenges must begin at one or more of the starting zones unless stated otherwise.
3. Teams may bring as many laptops as they have students to the competition and kept in their practice area (pit).
4. Only one laptop may be used at the competition table.
5. Use of other electronics during the competition, including other computers, calculators, cell phones, and other computing devices is not allowed.
6. Teams cannot use custom-made parts.
7. All challenge tasks must be completed using a computer program (no tilt drive or copy cat). Programs for controlling the robots must be written in Ch from SoftIntegration, Inc.
8. There will be no internet access during the competition. If a team is caught using the internet during the competition, the team will be disqualified.
9. Once the competition has begun, the teams may speak to the Judges for clarification on problems, but should not talk to anyone else outside of their team.

Practice Information
1. All teams will be provided a designated practice area (pit) to place their practice board.
2. You are given two 15-minute practice periods to practice on the official board between 10am and noon. (15 minute periods can be found on the RoboPlay Competition schedule page.)
3. Each 15 minute period starts and ends when specified in the schedule. You will not be given 15 minutes from when you arrive. Please be prompt.

Competition Information
1. You are given three 15-minute competition periods to compete on the official board between 12:45pm and 3:45pm. (15 minute periods can be found on the RoboPlay Competition schedule page.)
2. In between each team’s run, there will be a five minute passing period.
3. No robots may be run on the competition board during the five minute passing period.
4. Any challenge that is on-going when your 15 minute period ends will be immediately stopped and points will be calculated.
5. You are allowed to attempt each challenge as many times as you like within the allotted competition time.
6. If you attempt a challenge multiple times, only the points from the highest scoring run will be kept.
7. Challenges may not be “chained together” meaning you cannot do two challenges simultaneously with the same program.
8. Teams are responsible for setting up the board for each run of each challenge.
9. Teams may not use more than five I-bots and one L-bot simultaneously.

Reminders for Students

General
- Measure everything with a measuring tape. Don’t trust the given dimensions to be completely accurate.
- Read how assignments are scored to figure out the best strategy to get points.
- Ask questions if you are unclear about something.

Assigned Boards
- These will be the boards you will practice on and compete on.
- Make sure you know where your assigned board is at all times.
- Refer to diagram given or ask someone.
Practice/competition times
- 15 minute practice/competition times will be marked by a whistle being blown.
- Arrive 5 minutes early for your allotted practice/competition time and stand in the designated waiting area.
- Refer to packet if you don’t know when your practice/competition times are.
- Keep your name tag on at all times. You will need it to gain access to the board during your 15 minute period as well as to your pit area.

Challenge Materials
Each team will have the following parts to complete the challenges.

<table>
<thead>
<tr>
<th>Part</th>
<th>Quantity</th>
<th>Recommended/Necessary Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linkbot-L</td>
<td>5</td>
<td>Protractor</td>
</tr>
<tr>
<td>Linkbot-L</td>
<td>1</td>
<td>Writing Utensils</td>
</tr>
<tr>
<td>Snap Connector</td>
<td>14</td>
<td>Compass</td>
</tr>
<tr>
<td>Caster</td>
<td>2</td>
<td>Timer/Stopwatch</td>
</tr>
<tr>
<td>3.5” Wheel</td>
<td>8</td>
<td>String</td>
</tr>
<tr>
<td>Bridge Connector</td>
<td>2</td>
<td>USB flash drives</td>
</tr>
<tr>
<td>Gripper</td>
<td>1</td>
<td>Ruler & Measuring Tape (min. 8 feet)</td>
</tr>
<tr>
<td>Cube Connector</td>
<td>1</td>
<td>Extension Cord</td>
</tr>
<tr>
<td>Soccer Scoop</td>
<td>2</td>
<td>Skiva PowerFlow Four Port</td>
</tr>
<tr>
<td>Hacky Sack</td>
<td>1</td>
<td>USB Charger (Qty: 2)</td>
</tr>
</tbody>
</table>

Definitions and Common Terms

Whole Inch
A distance/measurement rounded down to the nearest inch.
Examples:
- 3.75 inches = 3 whole inches
- 1.95 inches = 1 whole inch
- ½ inch = 0 whole inches.

Nearest Point
The nearest point is a measurement taken from the nearest edge of the robot to the reference point by the shortest straight line distance. The measurement will be taken by placing a measuring tape on the table under the bot and placing a pipe on top of it, against the nearest part of the bot down to the tape.

Pipe Moved
Pieces of pipe are used as obstacles and pylons for some challenges. These pipes are placed on dots on the board. A pipe will be considered moved if it is knocked over or the dot is visible around the outer edge of the pipe.

Same Time
For the purposes of scoring, events which happen within one second of each other shall be considered the same time.
Diagrams

Map of the Challenge Board

Challenge Board Dimensions
Detail dimension of the Bell location

Detail dimension of the Grid pattern.
Challenges

1. Hit the Wall! (15 Points Possible)

Starting Position
Bot starts anywhere within the West Zone.
Bot must start touching the West Zone wall.

Objective
Touch the East Zone wall.

Scoring

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Touch the East Zone Wall.</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Penalty for each whole inch short of the East Zone Wall.</td>
<td>-3</td>
</tr>
</tbody>
</table>
2. Disco
(30 Points Possible)

Starting Position
Bot is placed in the Center Ring, facing the West Zone.

Objective
Part 1:
While the Bot’s LED is red, spin clockwise in place, three times, and pause facing the West Zone.

Part 2:
The Bot’s LED turns blue and spins counterclockwise in place, three times, and finishes facing West Zone.

Scoring

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spin Clockwise three times.</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Spin Counter-Clockwise three times.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Bot displays both colors.</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>For changing colors in the right order.</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Does not finish facing West Zone (±25°).</td>
<td>-5</td>
</tr>
</tbody>
</table>
3. Chicken (30 Points Possible)

Starting Position

Bot One is placed in the East Zone
Bot Two is placed in the West Zone, facing the other Bot
The ‘X’ Button on each bot must be facing upwards.

Objective

Both bots move to the middle and get as close to each other without touching as possible.

Scoring

Distance is measured between the ‘X’s on each of the bot’s labels.

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Distance <= 4 Inches.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>4 inches < Distance <= 5 inches.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>5 inches < Distance <= 6 inches.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Distance > 6 Inches.</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Penalty if Bots Touch .</td>
<td>No Points</td>
</tr>
</tbody>
</table>

Image Diagram
4. Bounce
 (40 Points Possible)

Starting Position
 Bot starts in Corner II.

Objective
 Bot moves completely within the Corner III boundary. Move back toward Corner II, come as close
to the Corner II boundary line as possible without touching or crossing over.

Scoring
 Distance is measured from the nearest point on the robot to the Corner II Boundary Line.

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Distance < 1 inch.</td>
<td>40</td>
</tr>
<tr>
<td>1</td>
<td>1 inch < Distance < 2 inches.</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>2 inch < Distance < 3 inches.</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>3 inch < Distance < 4 inches.</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Distance > 4 inches.</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Penalty for not completely entering Corner III.</td>
<td>No Points</td>
</tr>
<tr>
<td>3</td>
<td>Penalty for touching or crossing Corner II Boundary Line.</td>
<td>No Points</td>
</tr>
</tbody>
</table>
5. Speed Racer (60 Points Possible)

Starting Position
Bot Starts in the West Zone.

Objective
Graph bot movement, distance over time, using the bot sensors. Bot must travel 24 inches in 10 seconds. Label graph as shown below. The bot may end in any location.

Scoring

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Figure is plotted.</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Graph shows linear relationship.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Graph starts at the origin.</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>X End Point is (9 < X) (Time) < 11.</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Y End Point is (22 < Y) (Distance) < 26.</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Penalty if graph not labelled as shown below.</td>
<td>No Points</td>
</tr>
</tbody>
</table>
6. Racetrack

(60 Points Possible)

Board Setup
Pipes set up to cover dots A, B, C and D.

Starting Position
Bot starts completely within the West Zone boundary.

Objective
Bot moves to the East Zone, turns around Pipe 4 and returns to the West Zone, without moving the pipes.

Scoring

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Turn around Pipe D in the East Zone.</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Finishes completely within the West Zone boundary.</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Penalty for each Pipe moved.</td>
<td>-10</td>
</tr>
</tbody>
</table>
7. High Five Low Five (60 Points Possible)

Board Setup
 Place a two pipe stack at Dot 2.

Starting Position
 Bot starts in Corner II.

Objective
 Create a bot that crosses board, knocks over at least one pipe at Dot 2, and “rings” the bell.

Scoring
 Touching the bell counts as “ringing”.

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Knock over at least one of the pipes in the stack on Dot 2.</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Ring the Bell.</td>
<td>30</td>
</tr>
</tbody>
</table>

Figure 1 - Bell Tower

Figure 2 - Pipe Stack

Figure 3 - High 5 Low 5 Setup
Two Stack Pipes on Dot 2
8. Steal the Gold (80 Points Possible)

Board Setup
 Pipes are placed on Dots 1, 2, 3, A, B, 6, 7 and 8.
 The Hacky is placed on Dot H.

Starting Position
 Bot is placed in Corner II.

Objective
 Your bot moves the hacky from the center of the pipe array to Corner III without moving any pipes.

Scoring

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Touching the Hacky with your bot.</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Move Hacky outside the pipe array.</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Move Hacky all the way inside Corner III.</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Bot stops completely inside Corner III.</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Penalty for each pipe moved.</td>
<td>-15</td>
</tr>
</tbody>
</table>
9. The Grid
(95 Points Possible)

Board Setup
A pipe is placed where the red circle is drawn in the illustration below.

Starting Position
Bot starts in Corner IV as illustrated below.

Objective
Use a bot to move the pipe to a scoring square. Then back the bot off from the pipe by at least 1 inch or run will not be scored.

Scoring
Score is taken off the diagram below.

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The score of the highest value square the pipe is touching.</td>
<td>See Diagram</td>
</tr>
<tr>
<td>2</td>
<td>Pipe stops completely within a scoring square.</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Penalty for bot ending within 1 inch of the pipe.</td>
<td>No Points</td>
</tr>
</tbody>
</table>
10. Transport (115 Points Possible)

Board Setup
Place an upside down cup (Pick-up Cup) over Dot B.
Place a right side up cup (Drop Cup) on Dot C.
The hacky is placed on the Pick-up cup.

Starting Position
Bot starts at any position touching the West Zone.

Objective
Have a bot pick up the hacky from the Pick-up cup, and drop it into the Drop cup.

Scoring

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bot picks up hacky.</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>Bot transports hacky within a foot of Drop Cup.</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Hacky touches the Drop Cup.</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Hacky is put into the Drop Cup.</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>Penalty for each cup moved from its starting position.</td>
<td>-20</td>
</tr>
</tbody>
</table>
Overview of Event Locations

- Donald Bren Hall (314): Location of Event
ICT Project Orange County: C-STEM

Participating Middle School, High School/ROP and College Instructors

Dennis Ashendorf (Math/Science) - Back Bay High School
Peter Selby (Physics) - Corona del Mar High School
Jackie Verona (Physics) - Corona del Mar High School
Daniel Leedy (Math) - Corona del Mar High School
Mark Smith (Computer Programming/Math) - Costa Mesa High School
Todd Metcalf (Math) - Ensign Intermediate School
Sean Glumace (Digital Media Arts) - Golden West College
Renah Wolzinger (Digital Media Arts) - Golden West College
James Tellier (Math/Technology) - La Paz Middle School
Judy Baca (Digital Media Arts) - La Paz Middle School
Marilyn Cunneen (Digital Media Arts/Video Game Design/Virtual Enterprise) - Marina High School
Greg Miller (Math) - McPherson Magnet School
Glen Warren (Technology/Information Literacy) - McPherson Magnet School
Shannon Duncan - McPherson Magnet School
Andres Dominguez (Math/Computer Science) - Newport Harbor High School
Debbie Pipes (Math) - Newport Harbor High School
Kimberly Hermans (Computer Programming/Math) - Northwood High School
Tran Tran (Math) - Orange High School
Shane Tappa (Engineering) - Santa Ana High School
Terry Kling (Technology/Library) - TeWinkle Intermediate School
Yassi Motamed (Math) - TeWinkle Intermediate School
Hali Kessler (Digital Media Arts) - University High School
Eric Shulman (Math) - University High School/Irvine Valley College
Minh Vu (Engineering/CAD) - Valley High School
Acknowledgements

A very special thank you is extended to Coastline ROP Board of Trustees:
Dolores Winchell, Bonnie Castrey, Lauren Brooks, Tammie Bullard and Martha Fluor
Darlene Le Fort, Coastline ROP Superintendent, and Carol Hume, Coastline ROP Assistant Superintendent
for their support of the ICT-Project Orange County: C-STEM and its success.

Our appreciation and recognition of the following individuals who believe in the importance of Computing, Science, Technology, Engineering and Math and in the power of innovation and collaboration to create opportunities for students in Orange County:
Gustavo Chamorro, ICT/DM Deputy Sector Navigator
Jeff Farr, Foothill High School
Julie Flapan, University of California, Irvine
Debra Friedman, Saddleback Valley Unified School District
Chris Harrington, Center for a New California
Patsy Janda, University High School
Kathy Johnson, Vital Link
Jillian Johnson-Sharp, CTEp
Merry Kim, Coastline ROP
Maria Lepe, Digital Media Center
Connie Mayhugh, Huntington Beach Union High School District
Alisa McCord, Orange County Department of Education
Laura Ott, Saddleback Valley Unified School District
Gary Page, California Department of Education
Tracy Parker, Coast Community College District
Kumar Ramajayam, Mathobotix
Debra Richardson, University of California, Irvine
Dejah Swingle, Coast Community College District
David Turner, Community Member
Keith Tuominen, Irvine Unified School District
Michael Vossen, Newport-Mesa Unified School District
Peggy Webster, Newport-Mesa Unified School District

Thank you to all Coastline ROP, Newport-Mesa Unified School District Office of College and Career Education, UC Davis C-STEM Center staff and UC Irvine Donald Bren School of Information and Computer Sciences staff, volunteers and participants in the first C-STEM Day in Orange County.